Projection Pushing Revisited
نویسندگان
چکیده
The join operation, which combines tuples from multiple relations, is the most fundamental and, typically, the most expensive operation in database queries. The standard approach to join-query optimization is cost based, which requires developing a cost model, assigning an estimated cost to each queryprocessing plan, and searching in the space of all plans for a plan of minimal cost. Two other approaches can be found in the database-theory literature. The first approach, initially proposed by Chandra and Merlin, focused on minimizing the number of joins rather then on selecting an optimal join order. Unfortunately, this approach requires a homomorphism test, which itself is NP-complete, and has not been pursued in practical query processing. The second, more recent, approach focuses on structural properties of the query in order to find a project-join order that will minimize the size of intermediate results during query evaluation. For example, it is known that for Boolean project-join queries a project-join order can be found such that the arity of intermediate results is the treewidth of the join graph plus one. In this paper we pursue the structural-optimization approach, motivated by its success in the context of constraint satisfaction. We chose a setup in which the cost-based approach is rather ineffective; we generate project-join queries with a large number of relations over databases with small relations. We show that a standard SQL planner (we use PostgreSQL) spends an exponential amount of time on generating plans for such queries, with rather dismal results in terms of performance. We then show how structural techniques, including projection pushing and join reordering, can yield exponential improvements in query execution time. Finally, we combine early projection and join reordering in an implementation of the bucket-elimination method from constraint satisfaction to obtain another exponential improvement.
منابع مشابه
Low-Back Biomechanics and Static Stability During Isometric Pushing
Pushing and pulling tasks are increasingly prevalent in industrial workplaces. Few studies have investigated low-back biomechanical risk factors associated with pushing, and we are aware of none that has quantified spinal stability during pushing exertions. Data recorded from 11 healthy participants performing isometric pushing exertions demonstrated that trunk posture, vector force direction o...
متن کاملConstraining theories of embodied cognition.
Influences of perceptual and motor activity on evaluation have led to theories of embodied cognition suggesting that putatively complex judgments can be carried out using only perceptual and motor representations. We present an experiment that revisited a movement-compatibility effect in which people are faster to respond to positive words by pulling a lever than by pushing a lever and are fast...
متن کاملIs perception of vertical impaired in individuals with chronic stroke with a history of ‘pushing’?
Post-stroke 'pushing' behaviour appears to be caused by impaired perception of vertical in the roll plane. While pushing behaviour typically resolves with stroke recovery, it is not known if misperception of vertical persists. The purpose of this study was to determine if perception of vertical is impaired amongst stroke survivors with a history of pushing behaviour. Fourteen individuals with c...
متن کاملRim curvature anomaly in thin conical sheets revisited.
This paper revisits one of the puzzling behaviors in a developable cone (d-cone), the shape obtained by pushing a thin sheet into a circular container of radius R by a distance η. The mean curvature was reported to vanish at the rim where the d-cone is supported. We investigate the ratio of the two principal curvatures versus sheet thickness h over a wider dynamic range than was used previously...
متن کاملPushing revisited: Differential flatness, trajectory planning and stabilization
We prove that quasi-static pushing with a sticking contact and ellipsoid approximation of the limit surface is differentially flat. Both graphical and algebraic derivations are given. A major conclusion is the pusher-slider system is reducible to the Dubins car problem where the sticking contact constraints translate to bounded curvature. Planning is as easy as computing Dubins curves with the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004